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Among techniques for the determination of the mode I stress intensity factors (SIFs), strain gage procedures are the simplest and most straightforward. 
We report here on an experimental investigation of the determination of opening mode stress intensity factors using the single strain gage method. Our 
approach overcomes certain drawbacks and greatly widens the applicability of strain gage methods in the determination of static SIFs of complex 
configurations. The approach was tested through experiments  on specimens of finite width and finite height edge-cracked plates (fully finite plates) 
subjected to tensile stress. We compared the experimentally determined mode I stress intensity factors of fully finite plates with the computed values 
using finite element analysis, obtaining good agreement between the present approach and computed values.  
Introduction 
Cracks frequently initiate and grow at stress concentration zones such 
as notches, holes, reentrant corners  and welded joints in structural 
components. Because such elements occur frequently in structural 
components, understanding the severity of cracks is important in the 
development of static strength, fatigue crack  growth and fatigue life 
prediction methodologies. The stress intensity factor (SIF) is the key 
parameter in linear elastic fracture mechanics (LEFM) for quantifying 
the severity of cracks. It reflects the effect of loading, crack size, crack 
shape and component geometry in life and strength prediction methods. 
 An accurate knowledge of the stress intensity factor is essential for 
the prevention of brittle fractures arising from cracks; in particular, the 
use of the LEFM principles in preventing the fracture of engineering 
components depends largely on the availability of accurate SIFs. As a 
result, analytical, numerical and experimental methods for SIF 
determination in cracked bodies have been developed for several 
decades [Sanford 2003]. Analytical methods are limited to simple 
configurations due to mathematical difficulties, and one must resort to 
numerical or experimental methods for more complex situations. The 
experimental determination of stress intensity factors is also needed as 
a way to validate theoretical and numerical results, and provides a 
valuable aid to their application. Approaches include the compliance 
method [Bonesteel et al. 1978; Jr 1981], photoelasticity [Gdoutos and 
Theocaris 1978; Hyde and Warrior 1990], caustics [Theocaris 1970; 
Konsta-Gdoutos 1996] and strain gage methods [Dally and Berger 
1993]. 
 Of all these techniques, the most straight forward is the use of electrical 
resistance strain gages [Sanford 2003]. It has received much attention 
because it can measure surface strains accurately and directly within 
strain gradient zones, allowing the subsequent determination of SIFs. 
Irwin [1957] first suggested the use of strain gages to determine SIFs; 
however, the local yielding effect at the crack tip of metallic materials, 
high strain gradients, the three-dimensional state of stress at the crack 
tips and the finite size of the strain gages are the primary issues for 
establishing a valid approach for accurate measurement of SIFs using 
the strain gage techniques. Earlier attempts to measure SIFs using 
strain gages were reported in [Broek 1982] 
 A practical method to tackle the issues mentioned in the previous 
paragraph, providing an effective strain gage technique for measuring 
the static opening mode stress intensity factor (KI) in two  dimensional 
bodies, was first proposed by Dally and Sanford [1987] for linear elastic 
isotropic materials. In this method the strains are represented by 
three/four parameter series. The generalized Westergaard approach 
[Sanford 1979] is employed to determine the strain series and 
subsequently KI . The chief advantage of the Dally–Sanford approach is 
that only a single strain gage is sufficient to determine the mode I SIF, 
which can be placed at distances far away from the crack tip. Their 
numerical results reveal that the zone of three-parameter strain series is 
sufficiently large. Further, an analysis of the error due to strain gradient 
effects was presented, to suggest possible locations for the finite-sized 
straingages. Experiments were conducted on aluminum compact 
tension (CT) specimens withsmallstraingages (active grid size 
0.76×−0.76mm ) at different distant radial locations from the crack tip. 

The authors noticed that the gage readings at all locations were affected 
by the formation of a plastic zone and the subsequent redistribution of 
stresses and strains. A methodology has been suggested based on 
Irwin’s method of shifting the elastic field [Sanford 2003] by a distance 
equal to the plastic zone radius r to correct the measured strains, and 
hence the SIFs. However, a major limitation of this approach is that one 
should know the exact SIF of the selected configuration a priori in order 
to calculate the plastic zone  
 Parnas and Bilir [1996] employed the Dally–Sanford single strain gage 
method to determine the SIFs of CT specimens made of steel and 
aluminum.Their investigation included the effect of plate thickness. The 
accuracy of the measured SIFs was observed to depend on the 
thickness of the specimen. The results clearly show that in the case of 
thin plates the linearity between applied load and measured strain is not 
achieved at all loads: beyond a certain load the relationship is found to 
be nonlinear. However, the linear relation is observed for thick plates. 
Parnas and Bilir attributed these effects to the formation of plastic zones 
in the specimens. 
 Other strain gage methods designed specifically for measuring static 
mode I SIFs have been proposed by Wei and Zhao [1997] and Kuang 
and Chen [1995]. Unlike Dally and Sanford, Wei and Zhao used  two 
strain gages, and adopted Williams’ [1957] eigenfunction expansion to 
determine the truncated strain series. These authors tested their theory 
on three-point bend steel (TPBS) specimens using 0.5×−0.5mm active-
grid strain gages and reported inaccuracies in the measured SIFs due 
to the formation of plastic zones. However, the locations of the strain 
gages were suggested empirically and require knowing a priori 
knowledge about the plastic zone size, which depends on the unknown 
exact stress intensity factor of the configuration. 
 Kuang and Chen [1995], in contrast, approached the problem using 
near-field strain equations and  asymptotic strain expressions. They 
suggested that strain gages can be placed at distances greater than 
half the thickness of the specimen from the crack tip despite the fact that 
at distances larger from the crack tip, the measured strains cannot be 
accurately represented by asymptotic terms alone.They conducted 
experiments on steel CT specimens using strip gages containing 10 
strain sensors each of 0.5×−0.5mm  active grid size. Contrary to 
theoretical predictions, the normalized mode I SIF was found to be a 
function of the applied loads and the thickness of the specimen. The 
measured SIF was also found to depend on the angular position relative 
to the crack axis. However these authors demonstrated that highly 
inaccurate SIF results are obtained if the strain gages are placed at 
distances below half the thickness of the specimen. Their 
measurements at locations away from the crack tip are also affected by 
plasticity effects. Corrections to the measured strains were suggested, 
in a manner similar to that of [Dally and Sanford 1987], but contrary to 
earlier works, no improvement of the measured SIFs was accomplished 
even after incorporating plastic zone corrections.  
  Of these various strain gage methods for measuring opening mode 
static SIFs, the procedure of Dally and Sanford enjoys the greatest 
practicability and a solid mathematical background. By contrast, very 
large numbers of strain gages are needed to measure opening mode 
SIFs in the overdetermined method proposed by Berger and Dally 
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[1988]. Dally and Sanford’s technique has been extended to mixed 
mode cases [Dally and Berger 1986], which requires four strain gages 
for determination of the SIFs. A proportional extrapolation technique for 
determining mixed mode SIFs using strain gages has also been 
proposed [Itoh et al. 1988]. However, a special strain gage pattern is 
needed in this technique.  
  An advantage of strain gage techniques is that they can be employed 
directly on metallic engineering components to determine the SIF of 
their configurations. Also important is that numerical and analytical 
solutions of static SIFs of complex domains can be corroborated via 
strain gage procedures to provide reliability of the results/methods. For 
example, many researchers have reported on the application of 
photoelastic methods [Marloff et al. 1971; Chan and Chow 1979; Amir et 
al. 1989; Nurse et al. 1994] and caustics [Biak et al. 1995; Lee and 
Hong 1993] to the determination of static SIFs or the corroboration of 
analytical and numerical solutions for important configurations. Such 
application investigations using existing procedures are useful in 
establishing the experimental methods and make them into a viable 
alternative in real design situations of great complexity. 
In spite of these important applications of strain gage methods, no work 
has been reported to date on the application of the Dally Sanford single 
strain gage procedure to the validation of accurate mode I static SIFs of 
the complex configurations, so as to establish the usefulness of this 
technique in real design situations. This is true also of the other strain 
gage methods. 
  A critical review of earlier work [Dally and Sanford 1987; Parnas and 
Bilir 1996; Wei and Zhao 1997; Kuang and Chen 1995] in this field 
discloses the various drawbacks that prevented further utilization of 
these methods in the determination of SIFs for important complex 
configurations: (a) the normalized SIF is found to be function of 
thickness of the specimen and the applied loads which is obstinate to 
the theory; (b) the measured strains are severely affected by plastic 
zone formation and subsequent strain redistribution; (c) while certain 
approximate procedures have been proposed to correct the measured 
strains (and hence SIFs), these procedures depend on the unknown 
exact stress intensity factor of the configuration; (d) there are indications 
that at times no significant improvements can be achieved even after 
plastic zone corrections are applied. The last three works referenced at 
the start of this paragraph employed theoretical values of SIFs for CT 
and TPBS specimens to correct measured SIFs for plasticity 
effects.Clearly such corrections are not possible in the case of 
configurations for which no SIF solutions are available. 
  These difficulties arise mainly from the use of the metallic specimens in 
strain gage procedures, although the SIF is independent of the material. 
The preparation of complex configurations, particularly of cracked 
specimens, is relatively difficult with metallic materials; great care has to 
be exercised in creating sharp natural cracks with intricate orientations. 
Thus methods such as Dally and Sanford’s, which have a sound 
mathematical basis, may be more effectively exploited by using 
materials other than metals. 
  The fact that the SIF is independent of the material is exploited in 
photoelastic and other experimental methods [Gdoutos 1990;Dally and 

Riley 1991]. As is well known, polymethylmethacrylate (PMMA), known 
commercially as Perspex or Plexiglas, is a homogeneous, isotropic and 
brittle material at room temperatures [Maccagno and Knott 1989]. This 
material has long been used in studies of many aspects of linear elastic 
fracture mechanics [Maccagno and Knott 1989; Mukherjee and Burns 
1972; Katsamanis and Delides 1988; Xu et al. 2004]. One advantage it 
offers is that it is relatively easy to introduce sharp natural cracks by 
pressing a razor blade into the bottom of a notch. PMMA is also 
inexpensive and easy to fabricate in complex cracked configurations, 
making it an excellent model material for experimental fracture 
mechanics. (See [Maccagno and Knott 1989] for details and a historical 
account of the use of PMMA for this purpose.)  
  In view of the shortcomings arising to the use of metallic specimens in 
strain gage procedures and of the availability of excellent strain gage 
technology, we suggest that the use of the specimens made of PMMA 
material will greatly broaden the applications of these methods. All of 
aforesaid drawbacksof use of the metallic specimens can be overcome 
with the use of this material. However, to the best of our knowledge no 
published report is available on use of the PMMA in conjunction with 
strain gage methods, in particular with the single gage technique of 
Dally and Sanford. 
  The proximity of component boundaries to the crack tip has an effect 
on SIFs [Sanford 2003; Gdoutos 1990]. In general, as the boundaries 
come close to the crack tip, the magnitude of the SIF increases. An 
edgecracked plate subjected to uniform tensile stress is a widely used 
benchmark problem [Pang 1993]. Analytical and numerical solutions for 
the mode I SIF of this configuration are available only for finite width 
plates [Murakami 1987; Tada et al. 2000], that is, for large values of 
a/wand h/ w≥−1, where a isthe crack length, wis the width of the plate 
and h is the height of the plate from the crack axis. However, to our 
knowledge no report in the open literature, whether using analytical, 
experimental or numerical methods, is available on SIFs for edge-
cracked plates of finite width and finite height (large a/ wand h /w≤−1) 
subjected to uniform tension. In this situation both the width and the 
height of the plate are close to the crack tip. We call such plates fully 
finite. 
  In this work we investigate the feasibility of experimental determination 
of accurate opening mode stress intensity factors using the Dally–
Sanford method and cracked polymethylmethacrylate (PMMA) 
specimens. In the Dally–Sanford procedure, gages can be placed at low 
strain gradient zones; as a consequence larger gages can be employed. 
In contrast with [Dally and Sanford 1987; Wei and Zhao 1997; Kuang 
and Chen 1995], our work attempts to measure accurate SIFs using 
relatively large straingages (active gage length 3mm) and monotonically 
increasing loads with continuous measurement of the strain. Our goal is 
to accurately determine opening mode SIFs of fully finite edge-cracked 
plates subject to uniform tension. To validate the proposed method for 
the determination of SIFs, we compare our experimental results with 
computer-calculated values obtained using ANSYS finite-element 
software.  

 
2. Theoretical background 
In the Dally and Sanford method [1987], the strain field adjacent to a 
crack tip is represented by an infinite series solution. The area around a 
crack tip can be divided into three regions (Figure 1) to identify valid 
ocations for accurate strain measurements. The very near field region 
(region I in Figure 1) 
 

 
 
Figure 1. Different regions at the crack tip. 

 
 is the zone where the singular term in the series or asymptotic 
expression is sufficient to represent this region. This is a singularity 
dominated zone. Due to yielding of material and three-dimensional 
nature of stress state,  this is not a valid region for accurate strain 
measurements.  
  Region II is the near-field region, defined as the area beyond region I 
where the strain field can be represented within a specified accuracy by 
a small number of series terms, both singular and nonsingular. Region 
III, the far-field region, corresponds to large values of the radial distance 
r from the crack tip; in that region a very large number of unknowns are 
needed in the series for an accurate representation of the strain field, so 
strain measurements are not appropriate there. Thus region II is the 
optimum zone for accurate strain measurements: it can be represented 
by few terms and is sufficiently away from the crack tip. Dally and 
Sanford [1987] adopted a three-parameter approach; that is, they 
assumed that the strain field in region II can be represented with 
sufficient accuracy by three series terms. The strain field in this region 
for plane stress conditions is then written as (see also [Sanford 2003]) 
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where A0 , A1 and B0 are unknown coefficients that can be determined 
using the geometry of the specimen and the boundary conditions.  
Using the definition of KI one can easily show that it is related to A0 by 

 =  A0 
 
A single strain gage is sufficient to measure the constant A (hence KI ) 
by placing and orienting the strain gage as given below. Using the strain 
transformation equations, the strain component ε x'x' point P located by r 
and θ  (Figure 2) is given by 
 

 =  

 
 
Where k =      
                                        

 

Figure 2. Strain gage location and orientation. 

The coefficient of  term in the above equation is eliminated if 

cos 2α =  =   

Also if the coefficient of  is eliminated if 

tan (θ / 2 ) = − cot 2α  
 
Thus by placing a single strain gage (Figure 2) with α and θ  as defined 
by (4) and (5) one can measure the strain ε, which in turn is related to K 
by  
 

 =   

 
The angles α and θ  depend only on the Poisson’s ratio of the specimen 
material. The selection of the radius r for locating the strain gage can be 
obtained by considering strain gradient effects, as explained in [Dally 
and Sanford 1987]. Since the gages can be located far from high strain 
gradient zones, the measurements can be taken with relatively large, 
hence inexpensive, strain gages.  
 
3. Numerical evaluation of the SIFs of fully finite edge-cracked 
plates 
The SIFs of finite width and finite height edge-cracked plates is given by 
   = σ   ( a/ w,h/ w)     
 
 where F ( a/ w,h/ w) is the configuration factor or normalized SIF, 
which shows the effect of geometry of the body on the SIF [Sanford 
2003; Gdoutos 1990].  

Finite element analyses using ANSYS 9.0 were carried out to determine 
accurate opening mode SIFs of fully finite edge-cracked plates (with 
various values of a/wand h/w) subject to uniform tension (Figure 3). The  
 
 
 
 
 
 
 
displacement extrapolation method of ANSYS [2005] was employed to 
compute the normalized opening mode SIFs. It is known (see [Swain 
2007]) that this method is consistent and yields very accurate SIFs. In 
our investigation we chose two values of a/w, 0.3 and 0.5, and values of 
h/w ranging from 0.2 to 1.1 in steps of 0.1. It is well known that semi-
infinite plates can be represented  approximately by h/ w≥−1, while 
h/w< 1 represents fully finite edge-cracked configurations.  
 

 
 

Figure 3. Problem domain: Edge cracked plate subjected to uniform 
tension. 

 
 Natural isoparametric quadratic triangular elements (T6) and the 
corresponding quarter point singular elements [Barsoum 1976; Freese 
and Tracey 1976] were used. We assume plane stress conditions, σ 
= 1.0MPa, a Young’s modulus          E =10000MPa and a Poisson’s 
ratio of 0.3. Because of symmetry, only half the plate was considered in 
the analysis. Figure 4 shows a typical unstructured mesh pattern 
(without gradation) used in the determination of the normalized SIFs. 
Such meshes were used for all values of a/ wand h/w. No significant 
improvements in the SIFs were observed when the meshes were 
refined further [Swamy 2007]. 
The computed normalized opening mode SIFs for different values of 
a/wand h /ware presented in Table 1. As expected, the SIF increases 
as the a/ wratio increases and the h /wratio decreases, that is,  
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Figure 4. Typical meshes for SIF determination for the problem domain. 
 

 

FI=KI / σ √πa FI=KI / σ √πa 

h/w a/w=0.3 a/w=0.5 h/w a/w=0.3 a/w=0.5 

0.2 3.5979 6.0343 0.7 1.6938 2.8514 

0.3 2.539 4.0308 0.8 1.6733 2.8342 

0.4 2.0736 3.2898 0.9 1.6649 2.8277 

0.5 1.8496 3.006 1 1.6622 2.825 

0.6 1.742 2.8954 1.1 1.6613 2.8249 
 
Table 1. FE-computed normalized SIFs of semi-infinite and finite edge-
cracked plates. 
 
when the surrounding boundaries approach the crack tip. It may also be 
noticed from Table 1 that F  remains almost constant for h/w≥−0.9, 
indicating semi-infinite cases.  
 
4. Experimental details 
 

As stated, our goal was to determine the SIFs of fully finite edge-
cracked panels with the shape shown in Figure 3, using the single strain 
gage technique of [Dally and Sanford 1987]. The configuration of the 
experimental specimens representing the problem domain is shown in 
Figure 5. The specimens were made from commercially available 
PMMA (Perspex sheet) with a thickness of 6mm. Plane stress condition 
is anticipated in the specimens. The width of all the specimens was kept 
at w=−150mm, while the crack length a and the height h of the 
specimen were varied to create semi-infinite and fully finite edge-
cracked specimens.  

 
 
Figure 5. Details of the experimental PMMA specimen. 
 
All specimens were monotonically loaded with a closed loop, 
servohydraulic INSTRON 8801 machine (100kN capacity) under 
displacement control with actuator speed 0.05mm/min. The whiffletree 
technique (Figure 5) was employed to transform the point load from the 
INSTRON to a uniformly distributed load on the specimen. The 
whiffletree plates were made from mild steel, and mild steel pins were 
used to connect them with the specimens. Five holes were used to 
connect each whiffletree to the corresponding specimen. As shown in 

Figure 5, each hole lies 10mm from the top or bottom edge of the 
specimen. It was assumed that the point load applied by the machine is 
equally divided between the five holes as shown in Figure 5. 
  To imitate the sharp crack form the model (Figure 3), we made a 3mm 
wide notch with a jigsaw, of length (a−2)mm, and further created a fine 
slit, 2mm long, by means of a razor blade. Very sharp cracks can be 
made in this way: the crack tip root radius is less than 0.0035mm (see 
[Srikanth 2006]). Two a /wratios (0.3 and 0.5) and four h/wratios (0.3, 
0.5, 0.7 and 1.0) were chosen for the experimental study. Only one 
specimen each was tested for a/ w=−0.3 and various values of h/w, and 
two specimens each for a/ w=−0.5 and various h/w. Strain 
measurements on the loaded specimens were carried outusing a single 
electrical strain gage (HBM type 1-LY11-3/120) with an active grid of 
3×−1.4mm . A Young’s modulus of 2300MPa and Poisson’s ratio of 0.37 
have been measured for the PMMA material in a tensile test [Swamy 
2007]. Thus α and θ in (4) and (5) equal respectively 58.69 and 54.76 . 
The radial position of the strain gage r =10mm was chosen in all 
experiments based on the strain gradient  analysis presented in [Dally 
and Sanford 1987].  
 The measured strains were processed and digitized using a National 
Instruments Data Acquisition Board (PXI 1052) and an eight-channel 
universal strain gage module (SCXI 1520). Continuous strain 
measurements was made by interfacing the INSTRON machine’s load 
cell with a NI Data Acquisition Board (DAQ). Figure 6 depicts a 
specimen attached to the INSTRON with whiffletree plates 
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Figure 6. A typical PMMA specimen with whiffletree plates. 
 
5. Finite element simulation of the experimental specimens  
Since the experimental specimen (Figure 5) differs from the original 
problem domain (Figure 3) especially in the matter of loading, a finite 
element simulation of the experimental specimen with assumed 
magnitude of point loads at the five holes was carried out using 
ANSYS. Such simulations before the experiments are vital in 
establishing whether or not the selected configuration of the 
experimental specimen mimics the actual problem domain. The 
specimens were modeled with T6 elements and quarter-point singular 
elements were placed at the crack tips. Figure 7 shows a 
representative mesh with loading and  boundary conditions employed 
in the numerical simulation studies. 

 
 
Figure 7. Typical mesh of an experimental specimen, computed by 
ANSYS. 
 
A few results of computed SIFs of the experimental specimens and 
that of original problem domainare presented in Table 2. It also 
presents the percent relative error (in absolute value) considering SIFs 
in Table 1 as exact values. It may be noticed from table that, the 
expected SIFs from the specimens are in very good agreement with 
the SIFs of the original problem (Figure 3). Although not presented 
here, similar simulations were carried out for other values of h /wand 
exceptional agreement between the two set of SIFs was observed 
[Swamy 2007]. Thus the numerical results clearly indicate that 
experimental specimen as designed in Figure 5 can accurately imitate 
the original problem (Figure 3).  
 

h/w 0.4 0.6 1 

Specimen FI (Figure 5) 2.0652 1.7427 1.6655 

Problem domain FI (Figure 3) 2.0736 1.742 1.6622 

Relative error 0.41% 0.04% 0.20% 
 
Table 2. Experimental and computed normalized SIFs for a/ w=0.3 
and selected values of h/w 

 

 
 
 
Figure 8. Variation of the measured strain with applied load for 
a/w=0.3. 
 
6. Experimental results and discussion 
Figure 8 shows the experimentally measured strain data on PMMA 
specimens as a function of the applied load for a/ w=0.3 and h /w=0.3, 
0.5, 0.7, 1.0. A linear fit was made to the data points of all the 
specimens. A very good linear relationship can be noticed between the 
measured strain and the applied load in the figure for all four 
specimens. The coefficient of determination R in all the graphs is also 
close to unity, indicating good fits. A slight deviation from linearity in 
Figure 8(a) is probably due to the improper settlement of the pins in 
the holes of the whiffletree. From the linear equations presented in 
each of the four graphs, measured strains were calculated at different 
loads. Subsequently, using the computed strains the opening mode 
SIFs were determined using (6) at different values of applied load. 
 Table 3 presents the measured opening mode SIFs (K ) at different 
loads for semi-infinite and fully finite edge-cracked plates of a/ w=−0.3. 
The experimental results of Table 3 are presented in graphical form in 
Figure 9 to show the dependency of K on the applied load and 
proximity to the boundaries. Since the measured strains are linearly 
proportional to the applied load so are the measured SIFs. Besides  
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Figure 9. Variation of the measured K with applied load for a/w=−0.3. 
 
this, the trend that the magnitude of the measured SIF is increasing 
with the increase in load is also in agreement with the theoretical 
predictions [Sanford 2003; Gdoutos 1990]. Further, the magnitude of 
SIF increases with decreasing h/w. Table 3 also provides normalized 
SIFs (F ), which are found to be independent of applied loads. 
Therefore a single value corresponding to a configuration is presented 
in the table.  
Plots of the measured strain data as a function of the applied load for 
a/w=−0.5 and h/ w=−0.3, 0.5, 0.7, 1.0 were found to be very similar to 
the case of a/ w=−0.3, and the corresponding averaged 

FI=KI / σ √m 

Load (N) a/w=0.3 a/w=0.5 a/w=0.7 a/w=1 
100 0.1132 0.0827 0.0757 0.0687 

200 0.2265 0.1653 0.1513 0.1374 

300 0.3397 0.248 0.227 0.2061 

400 0.4529 0.3307 0.3027 0.2748 

500 0.5662 0.4133 0.3783 0.3434 

600 0.6794 0.496 0.454 0.4121 

700 0.7926 0.5787 0.5297 0.4808 

800 0.9059 0.6613 0.6053 0.5495 

900 1.0191 0.744 0.681 0.6182 

1000 1.1323 0.8267 0.7567 0.6869 

FI 2.7098 1.9783 1.8108 1.6438 
 
Table 3. Measured K values at different loads for a/w=0.3, and load-
independent normalized SIFs (last row). 

 
 
Figure 10. Variation of the measured K with applied load for a /w=0.5. 
 
measured SIFs at different applied loads are shown in Table 4. Figure 
10 shows the graph of averaged measured SIFs as function of the 

applied load. As in the case of a/w=0.3, the increase of the SIF with 
decreasing h /wand increasing values of the applied loads are in line 
with the theory. The normalized SIFs for h /w=0.3, 0.5, 0.7, and 1.0 
also appear in Table 4.  
The measured F using strain gages and the computed normalized 
SIFs using FEA of semi-infinite and fully finite edge-cracked plate 
appear in Table 5. For comparison, the table also shows the analytical 
values of normalized SIFs [Tada et al. 2000] for semi-infinite plates 
(h/w=1.0). The discrepancy between  

 

FI=KI / σ √m 
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Load (N) a/w=0.3 a/w=0.5 a/w=0.7 a/w=1 
100 0.2031 0.1654 0.154 0.152 

200 0.4063 0.3308 0.3081 0.304 

300 0.6094 0.4962 0.4621 0.456 

400 0.8126 0.6616 0.6162 0.608 

500 1.0157 0.827 0.7702 0.76 

600 1.2189 0.9923 0.9242 0.912 

700 1.422 1.1577 1.0783 1.0639 

800 1.6252 1.3231 1.2323 1.2159 

900 1.8283 1.4885 1.3864 1.3679 

1000 2.0315 1.6539 1.5404 1.5199 

FI 3.7666 3.0665 2.8561 2.8181 

 
Table 4. Measured KI values at different loads for a /w=0.5, and load-
independent normalized SIFs (last row). 
 

h/w 
FI (a/w=0.3) FI (a/w=0.5) 

numerical experimental Analytic numerical Experimental Analytic 

0.3 2.539 2.7098 (6.7%) ------ 4.0308 3.7666 (6.6%) ------ 

0.5 1.8486 1.9783 (7%) ------ 3.006 3.0665 (2%) ------ 

0.7 1.6938 1.8108 (6.9%) ------ 2.8514 2.8561 (0.2%) ------ 

1 1.6622 1.6438 (1.1%) 1.6624 2.825 2.8181 (0.2%) 2.8291 
 
  
Table 5. FE-computed, experimentally measured, and (where 
available) analytic values of F for edge-cracked plate and two choices 
of a/w. Bracketed values are absolute values of relative error. Analytic 
solutions are from [Tada et al. 2000]. 
 
 the experimentally determined and FE-computed values, ranging from 
0.2% to 7%, shows (assuming the FE-computed values to be exact) 
that the experimental method is substantially accurate in spite of the 
relatively large gage (3mm active length). Excellent agreement is also 
observed between the measured and the theoretical normalized SIFs 
of semi-infinite plates.  
Probable reasons for the somewhat larger errors (up to 7%) appearing 
in Table 5 are: (a) In all cases the cracks (fine slits) were made by 
pressing a razor blade through a distance of 2mm; although great care 
was taken, it is difficult to control this length precisely. (b) When the 
razor blade is employed, the crack front at times is not precisely 
normal to the sheet surface. Similar observations were made in 
[Williams and Ewing 1972].  
The measured and computed SIFs are shown in Figure 11, in order to 
assess the usefulness of the strain gage method of Dally and Sanford 
[1987] in combination with PMMA specimens for measuring  the 
accurate SIFs. We see that either the results of Table 1 or the graphs 
in Figure 11 may be employed for SIFs of finite width and finite height 
edge-cracked plates subject to uniform tension.  
  

 
 
Figure 11. Comparison of measured and computed values of the 
normalized SIF. 
 
7. Conclusions 
The present investigation outlines various reasons which prevented 
the extensive application of the strain gage methods in determination 
of the accurate mode I SIFs. An experimental program is devised 
which includes the use of PMMA specimens so as to make the single 
strain gage method of [Dally and Sanford 1987] a more powerful and 
attractive experimental technique. The effectiveness of use of PMMA 
specimens in conjunction with the Dally and Sanford technique in 
measuring accurate opening mode stress intensity factors was 
demonstrated in the present investigation. Monotonically increasing 
load experiments were performed on the finite width and finite height 
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PMMA edge-cracked specimens and strains were measured using 
3mm active length strain gages. Various trends of the experimental  
results are in excellent agreement with the LEFM theory. Moreover, a 
good agreement has also been observed between computed SIFs 
using FEA and the measured SIFs using the relatively large strain 
gages. The present investigation attempts to suggest accurate SIFs of 
the fully finite edge-cracked platesand subjected to uniform tension. 
The results of the present work clearly demonstrate that the single  
strain gage technique of Dally and Sanford can be used more 
effectively in combination with the PMMA specimens and can become 
a very useful tool for measurement of accurate opening mode SIFs of 
thecomplex configurations yet with relatively large gages. 
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